
Plan2Scene: Converting Floorplans to 3D Scenes
Supplemental Materials

Madhawa Vidanapathirana Qirui Wu Yasutaka Furukawa Angel X. Chang Manolis Savva
Simon Fraser University

A. Additional Implementation Details
A.1. Vectorization and 3D Geometry Construction

Floorplans are most commonly available online in raster
image formats. To convert such images to vector floorplans
we can employ prior work such as the Raster-to-Vector sys-
tem of Liu et al. [6]. The vector floorplan outputs delineates
walls, doors and windows as line segments defined by 2D
coordinate pairs, room type labels of each room and posi-
tions of fixed objects (e.g., sinks, toilets, kitchen islands).
In this paper, we do not focus on the floorplan vectorization
stage of the Plan2Scene task, so we use ground truth vector-
ized floorplans provided in our dataset, as described in the
main paper.

To convert the vectorized floorplan to 3D geometry we
employ a simple rule-based approach. The Rent3D dataset
separately defines the wall boundary of each room as a poly-
gon consisting of wall line segments, with doors and win-
dows of each room also specified by line segments. We as-
sign each door/window annotation line segment to the clos-
est wall line using a threshold distance of 20 pixels and a
threshold direction vector angle difference of arccos(0.9)
(i.e. dot product of direction vectors greater than 0.9).

We then generate 3D geometry for each room by extrud-
ing the architectural surfaces (walls, floor and the ceiling)
with a number of default dimension values. The scale fac-
tor to real-world measurement units is available in the floor-
plan dataset we use. Wall height is conditioned on the room
type, with all walls set to 2.8m tall, except for walls incident
on balcony exterior at 1.4m. Wall thickness is set to 0.1m.
Then, holes are created in the walls for doors and windows.
The height and vertical placement of holes are determined
by the 3D mesh model chosen for door or window (see next
section).

A.2. 3D Object Placement

We choose suitable 3D object models for doors, windows
and other fixed objects from the ShapeNet [2] dataset using
a rule-based algorithm.
Placing 3D models for doors and windows. For each door
and window, we first select appropriate 3D mesh models.

(a) Entrance door with paving
at bottom.

(b) Bathroom window placed at
higher elevation.

(c) Closets next to each other,
precisely fitting the AABBs.

(d) Kitchen objects ‘clamped’
to closest wall.

Figure 1: Illustration of object placement handling in a va-
riety of scenarios, as specified by rules in Table 1.

We used 26 representative door and window models from
ShapeNet [2]. The 3D mesh models are aligned, metrically
scaled, and tagged with appropriate metadata to allow selec-
tion conditional on: 1) opening type (door or window), 2)
exterior vs interior use (e.g., entrance door with floor paving
shown in Figure 1a is used for exterior doors) and 3) open-
ing for particular room types (e.g., balcony doors, or high
windows for bathrooms as in Figure 1b). Among the object
models that meet the selection criteria, we choose the one
closest in length to the width of the opening in the floorplan.
We scale and orient the CAD model so as to fit the opening
width.
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Table 1: Rules used to place 3D mesh models for fixed ob-
ject icons indicated on the input floorplans.

Closest wall Object Icon AABB

Category Selection criteria Clamp Shrink to fit Orient Fit width

closet AABB size ! !

sink room type !

bathtub wall size ! !

toilet - !

cooker - ! !

Placing 3D models for fixed objects. Icons indicating
placements of fixed objects are prevalent in floorplans.
We manually annotated the Axis Aligned Bounding Boxes
(AABBs) of ‘cooker’, ‘sink’, ‘bathtub’, ‘toilet’ and ‘closet’
indicated on our test set floorplans. Then, we used 22 3D
mesh object models from ShapeNet [2] to populate these
icons. All these objects are scaled to real world units and
consistently aligned. The first step in placement is selection
of a specific 3D mesh variation. Table 1 shows a set of crite-
ria based on room category, width of annotation AABB, and
size of closest wall, which we used to determine the most
suitable 3D mesh model to place. The closet in Figure 1c
illustrates selection of an object model that is closest to the
width of the icon AABB.

Table 1 also summarizes the rules used for determining
the positioning, scaling and orientation of fixed objects. By
default, we position each object centered at the indicated
placement on the input floorplan. If the ‘clamp to closest
wall’ rule is set, the object is moved and rotated to ensure
the backside of the object abuts the wall. Figure 1d shows
an example of a cooker and a kitchen sink clamped to a wall.
If the ‘orient to object icon AABB’ rule is set, the object
is rotated to fit the larger dimension (width) of the AABB,
additionally using two ray-tests to face the backside against
the nearby wall. We send two rays orthogonal to the larger
dimension, originating from the center of AABB. In some
cases, we need to re-scale the object based on the size of
the icon or the surrounding space (e.g., matching the width
of the closet icon, or shrinking to provide clearance when
clamping against a wall).

A.3. Photo Room Assignment

We did not focus on the photo-to-room assignment stage
of the Plan2Scene task. Assignments of photos to rooms are
sometimes found in the online real estate listings. These as-
signments can also be carried out as a simple annotation
task, or be automated through scene classification-based
methods. In this paper, we use ground truth photo assign-
ments as provided by our dataset. This stage is certainly
an interesting research problem that can be investigated in
future work. Prior work has also focused specifically on as-
pects related to the photo assignment problem and may be

(a) Surface
crop

(b) Seam corrected
crop

(c) Non-
stationary texture

(d) Stationary
texture

Figure 2: Illustration of requirements for texture to be
tileable. Sub-figure (a) is a rectified surface crop, which is
2x2 tiled. Here, the discontinuity between crops is a tiling
artifact. Sub-figure (b) is a 2x2 tiling of the same crop, af-
ter seam correction. Here, the pixels at the border of the
crop are modified to remove seams. Another requirement
is for the texture crops to be stationary. Sub-figures (b) ,(c)
and (d) are all seam corrected. Yet, in sub-figures (b) and
(c), repetitiveness induced by tiling is visible due to non-
stationary. Sub-figure (d) satisfies both requirements and
does not produce undesirable tiling artifacts.

utilized and extended to address this problem [5].

A.4. Texture Synthesis Module

Tileable textures. Figure 2 shows visual examples of the
steps necessary to produce a tileable texture from an im-
age patch. A rectified surface crop will have discontinuities
when tiled. By applying a seam correction post-process, the
discontinuity at the seams is smoothed out. We also need to
ensure that the generated texture is stationary to avoid re-
peating patterns due to non-stationarity in the texture.
Median color computation. When computing the median
color of a surface crop, we separately compute the median
of pixel values for each RGB color channel. The median
color is then the color represented by these three RGB me-
dians.

A.5. Texture Propagation (GNN) Module

Graph representation. The Rent3D dataset separately de-
fines doors for each room. Thus, inferring room-door-room
connectivity requires pairing of door line segments from ad-
jacent rooms. We pair door line segments that belong to
two rooms using a threshold distance of 20 pixels and a
threshold direction vector angle difference of arccos(0.9)
(dot product of direction vectors greater than 0.9). Then,
a pair of rooms that shares a door pair is connected by an
edge in our graph representation.
GNN architecture details. Our GNN Architecture consists
of the following layers: Linear → ReLU → Linear →
ReLU → Gated Graph Convolution → ReLU →
Linear → ReLU → Linear. The input dimension is d and
the output dimensions is 3 × 11. The intermediate layers
handle 2d-dimensional vectors. The Gated Graph Convolu-
tion Layer has a sequence length of 3.
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Training curriculum. Recall that we train the GNN by tak-
ing each observed surface in the training set as unobserved,
and then treating it as a prediction target. Therefore, for
each observed surface s of every room r in every training
set house, we create a graph Gr,s which is a copy of the
room-door-room connectivity graph G of that house, having
masked the surface texture embedding ~t∗r,s from the input.
The masking involves zeroing the surface texture embed-
ding and the corresponding “presence cell”.
Graph augmentation. We replace each graph in-
stance Gr,s generated above by 7 mutated graphs
{G1

r,s, . . . G
j
r,s, . . . , G

7
r,s} where additional surfaces are

masked subjected to different probabilities. The criteria
used generates 3 copies with no additional mutations, 2
copies where a surface is unobserved subjected to a prob-
ability of 0.2, and one copy each where a surface is unob-
served subjected to probabilities 0.4 and 0.6. We use these
mutated graphs to train the GNN.
Prediction targets for training. The GNN computes 3 sur-
face texture embeddings for each node: the floor texture em-
bedding t̂r,1 ≈ ~t∗r,1, the wall texture embedding t̂r,2 ≈ ~t∗r,2
and the ceiling texture embedding t̂r,3 ≈ ~t∗r,3. The training
targets are embeddings ~t∗r,1, ~t∗r,2 and ~t∗r,3 computed by our
improved texture synthesis approach for observed surfaces
leveraging the textureness score. The GNN is only used
for inferring texture embeddings of unobserved surfaces.
Therefore, we do not encourage training signals that rep-
resent application of GNN for an observed surface. Hence,
for each training graph Gj

r,s the loss function is applied only
to the output t̂r,s, which is the texture embedding prediction
corresponding to the surface s of room r. Our training cur-
riculum ensures this surface is unobserved.

B. Substance-Mapped Textures Dataset
In the main paper we describe the collection of tileable

(seamless and stationary) textures that we use to power the
texture retrieval baseline against which we compare our ap-
proach. Figure 3 shows several example textures from each
substance category of this dataset. This dataset contains a
total of 146 high quality textures that are directly tiled onto
architectural surfaces by the retrieval baseline.

C. Details of SUBS Metric
This metric measures the substance classification error

rate. It applies a substance classifier separately on both the
generated texture and the reference crop. If the two pre-
dictions do not match, then we count this as a substance
error. Details of the substance classifier we use for this
metric are as follows. We re-initialized and trained the last
linear layer of a VGG16 network pretrained on ImageNet.
The training set is a mix of crops sampled from our station-
ary textures dataset and crops sampled from rectified sur-

Figure 3: Selected samples from Substance Mapped Tex-
tures dataset.

faces in OpenSurfaces [1] (which provides substance cat-
egories). We extracted twenty 128x128 crops per texture,
from a subset of textures in the train split of the stationary
textures dataset and up to ten 128x128 opaque crops per
surface from a subset of rectified surface masks provided
by OpenSurfaces. This resulted in a train set of 10498 crops
(4120 from stationary textures dataset and 6378 from Open-
Surfaces). The dataset covered four substances (‘wood’,
‘painted walls’, ‘carpet’ and ‘tiles’). We used weighted
cross-entropy loss for training, where each class label is
weighted by the L2 Norm(1/(1+‘frequency of label in the
train set’)). The trained model has a accuracy of 87.9% on
an unseen validation set of 60 crops extracted from Open-
Surfaces and 64 crops extracted from our stationary textures
dataset.

D. Additional Quantitative Evaluation

How does performance depend on unobserved photo
fraction? Figure 4 shows the performance of various meth-
ods on all surfaces at different levels of simulated unob-
served photo fractions. Figure 5 plots the same results on
unobserved surfaces. Our Synth approach performs the
best across the spectrum among all the tileable approaches.
How similar is the generated texture distribution to the
input? We use FID [4] to compute the similarity in distri-
bution between the generated textures and the surface crops.
For our method Synth, the FID scores of observed sur-
faces (196.1), unobserved surfaces (199.4) and the overall
FID score considering all the surfaces (196.2) are roughly
the same. This indicates that both predictions for unob-
served surfaces by the GNN and predictions for observed
surfaces using the textureness score have an equal degree of
similarity to the input surface crops. Table 2 computes FID
between generated textures and surface crops for different
surface types and room types. Similarly to the overall FID
scores across all surfaces, Synth performs the best among
all tileable approaches. We can conclude that we do better
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Figure 4: Evaluation on the test set across a spectrum of simulated unobserved photo fractions. Lower metric values are
better. Fraction equal to 0 indicates no simulated unobserved photo, whereas 1.0 indicates removal of all photos. Synth
(ours) is the best performing tileable approach across the spectrum.
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Figure 5: Evaluation on the test set across a spectrum of simulated unobserved photo fractions, reporting metrics only for
unobserved surfaces. The RS Mean Crop ablation replaces GNN predictions with a mean crop embedding computed using
all the surface crops from matching room type and surface type surfaces in the training set. Synth (ours) performs the best
among tileable methods across different levels of unobserved photo fractions.

Table 2: Distributional similarity between generated tex-
tures and reference surface crops on the test set, measured
using FID [4] score. Room types without a sufficient num-
ber of surface crops are excluded. Note that the Crop
method has an unfair advantage as it directly uses reference
crops. Synth performs best among all other approaches.

Synth (ours) NaiveSynth Retrieve Crop

Floor 191.1 238.5 289.6 65.8
Wall 232.6 259.2 261.0 41.8
Ceiling 198.0 254.4 232.7 44.1

Reception 206.2 253.3 262.9 47.6
Bedroom 209.3 250.8 247.0 31.6
Kitchen 207.4 256.8 256.4 49.9

than other tileable texture approaches on modelling surface
type and room type specific distributions. The use of sur-
face crops as reference crops provides Crop with an unfair
advantage on this metric, since the crops used by Crop are
directly sampled from the same pool of surface crops.

Table 3: Ablations showing the impact of improvements in
our texture synthesis module relative to baselines. The re-
sults are reported on 4000 rectified surface crops sampled
from the Rent3D dataset. The similarity metrics measure
similarity between the input crop and the synthesized tex-
ture. The first two rows report values measured against in-
put crops as baselines for comparing the TILE metric. Then,
we report on ablations of our texture synthesis approach.
*-NT indicates Henzler et al. [3] implemented on * color
space. ∆ indicates variations where median color is sepa-
rated. ‘SC’ indicates use of the substance classifier branch.
Lower values are better.

Method VGG similarity [3] COLOR FREQ SUBS TILE

Rectified crop 0.000 0.000 0.000 0.000 52.196
Rectified crop (seam corrected) 7.439 0.098 0.019 0.279 35.791

RGB-NT [3] 7.295 0.724 0.054 0.447 19.772
RGB-NT + SC 7.251 0.832 0.045 0.522 19.861
∆ RGB-NT + SC 7.334 0.479 0.075 0.518 39.003
∆ HSV-NT + SC (ours) 7.375 0.371 0.051 0.458 21.149

E. Additional Ablations

Improvements on the texture synthesis module. Table 3
and fig. 6 show the performance of the texture synthe-
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sis module using the various improvements we introduced
over naively applying a texture synthesis module from prior
work. The first two rows of Table 3 are naive baselines that
use the input crop itself as the texture. Both of these per-
form the worst on the TILE metric, despite having the seam
correction applied to the later case. We see that texture syn-
thesis models trained on our stationary textures dataset do
a better job on TILE. The RGB-NT approach is the neu-
ral texture approach by Henzler et al. [3]. The other ap-
proaches use the substance classifier branch during training
(denoted by ‘+ SC’). The substance classifier encourages a
structured latent space that better suits GNN propagation,
despite weakening of COLOR and SUBS metrics. The VGG
statistics-based similarity metric by Henzler et al. [3] gives
similar numbers to all the synthesized variants. RGB-NT
and RGB-NT + SC perform poorly on color similarity, as
observed visually (Figure 6) and as evident by the COLOR
metric values. The ∆ RGB-NT + SC and ∆ HSV-NT + SC
methods separate the median color and feed the offset color
components through the network. This drastically improves
COLOR metric. As Figure 6 shows, the synthesized textures
do well on substances such as wood, carpet and plastered
walls but not so well on regular textures such as tiles or
bricks (last two rows). This is a limitation of Henzler et al.
[3]’s approach which forms the basis for our architecture.
Yet, we choose to use this approach as it provided us with
other desirable properties, including a compact latent em-
bedding, and image conditioning for the textures synthesis.
Improvement on observed surfaces. The use of the tex-
tureness score to choose an embedding instead of using a
mean crop embedding causes COLOR to degrade (0.388→
0.453), FREQ to improve (0.038 → 0.036), SUBS to im-
prove (0.427 → 0.416) and FID to improve (196.1 →
185.3). All values are reporting changes on the validation
set. The above trends also apply to the test set.
Improvement on unobserved surfaces. The use of our
GNN architecture for texture propagation instead of a room
type and surface type conditioned mean crop embedding
causes COLOR to degrade (0.708 → 0.747), FREQ to im-
prove (0.033→ 0.030), SUBS to improve (0.459→ 0.450)
and FID to improve (226.2 → 196.2). All values report
changes on the validation set, with 60% unobserved photos
except for FID. The above trends are consistent on both the
validation and test sets across a spectrum of simulated un-
observed photo fractions (see Figure 5 for plots of the test
set results).

We hypothesize that mean crop emeddings outperform
the textureness approach (for observed surfaces) and the
GNN (for unobserved surfaces) on COLOR due to the fol-
lowing reason. Concatenating median RGB color to the em-
bedding causes mean crop embeddings to synthesize tex-
tures dominated by the average color of the input crop,
which is often similar to the color histogram of the medoid

Surface Crop RGB-NT
(Henzler et. al.)

RGB-NT + SC Δ	RGB-NT + SC Δ	HSV-NT + SC
(ours)

Figure 6: Synthesis results from ablated versions of our im-
proved texture synthesis module. Each synthesized texture
and crop is tiled in a 2x2 configuration and textures are seam
corrected using post-processing. Our texture synthesis ap-
proach produces the highest quality textures overall.

crop chosen as a reference. However, these mean crop
embedding textures exhibit a ‘washed out’ appearance and
score worse along other texture similarity metrics. More-
over, the FID indicates that overall (at a distributional level),
textures of mean crop embeddings are of lower quality
than the textureness score-based selections and GNN pre-
dictions.

F. Additional Qualitative Examples
We provide additional qualitative comparison examples,

illustrating the results of our approach and comparing them
against the baselines. See Figures 7 to 10.

G. Additional User Study Analysis
The 3D renderings of the textured houses used in the

user-study were generated by simulating 60% of the photos
unobserved. All photos and their room assignments were
shown to the users. The users were not informed about
availability of a particular photo to a method. Here, we an-
alyze the user study results per user and per house to reveal
more detailed trends in user ratings comparing our approach
to baselines. Figure 11 plots these results. The median of
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RetrieveCrop NaiveSynth Synth	(Ours)Input
Reception,

Kitchen, Entrance

Reception,
Kitchen, Entrance

Reception,
Kitchen, EntranceBathroom
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Reception, Kitchen

Reception, Kitchen

Bathroom

Bedroom

Bedroom

Bathroom

Reception

Bedroom

KitchenUnknown

Kitchen Reception

Reception

Reception

Reception

Bedroom

Figure 7: Additional qualitative comparisons of results on the test set. Photos that are unobserved are indicated by dashed
lines.

the preference for our approach relative to a compared base-
line is indicated in each plot by a blue dashed line.

The per-user plots show a trend we did not expect: Crop
does a relatively better job than the other two baselines.
Users end up preferring Crop over Synth (ours) more
than any other baseline over ours. We expected that Crop
would produce the worst looking textures since surface
crops are not tileable. However, some users mistook re-
peating artifacts in tiled surface crops as valid tile surface
appearance. Furthermore, regularly tiled surfaces such as

bathroom tiles are a common failure case for our approach
and this could have also contributed.

The per house plots show that in each case only 4/20
of houses textured by our method did not receive majority
preference. Two of those houses are common across all 3
experiments. These two houses are the two houses that we
used in the main paper to illustrate failure cases due to erro-
neous semantic mask predictions and due to not accounting
for illumination conditions.
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Figure 8: Additional qualitative comparisons of results on the test set. Photos that are unobserved are indicated by dashed
lines. Unobserved photos are uniformly sampled at random, with probability 0.6.
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RetrieveCrop NaiveSynth Synth (Ours)Input
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Figure 9: Additional qualitative comparisons of results on the test set. Photos that are unobserved are indicated by dashed
lines. Unobserved photos are uniformly sampled at random, with probability 0.6.
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RetrieveCrop NaiveSynth Synth	(Ours)Input
Bedroom

Reception

BedroomBathroom

Bathroom

Kitchen

Bedroom

Figure 10: Additional qualitative comparisons of results on the test set. Photos that are unobserved are indicated by dashed
lines. Unobserved photos are uniformly sampled at random, with probability 0.6.

Synth (ours) vs. RetrieveSynth (ours) vs. Crop Synth (Ours) vs. NaiveSynth

Figure 11: User study results analyzed on a per-user (green plots) and per-house (orange plots) basis. The median of
preference for results produced using our approach relative to the compared baseline is indicated by the blue dashed line in
each plot. The 50% preference level is indicated by the black dashed line.
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